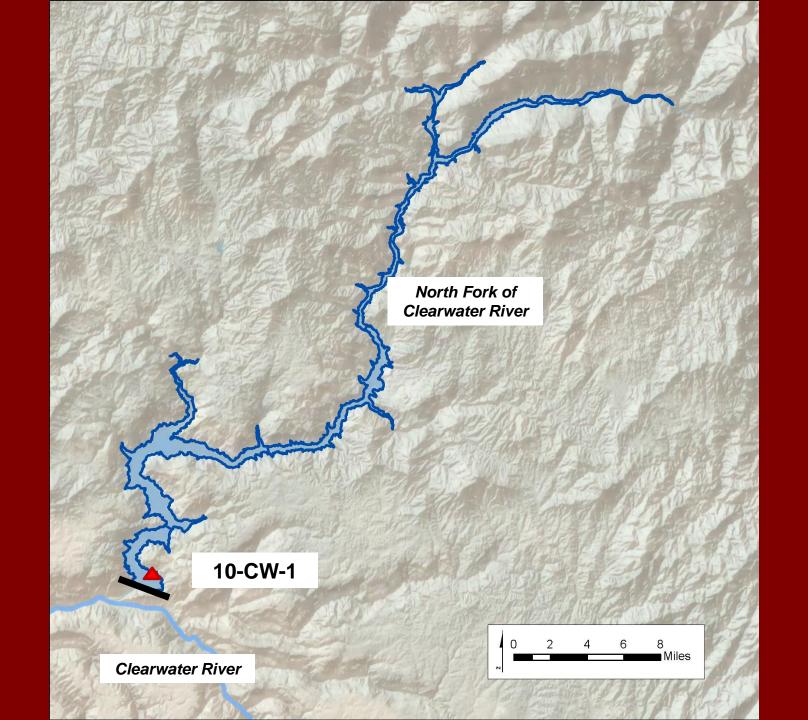

Middle and Late Holocene Land-use Intensification on the North Fork of the Clearwater River

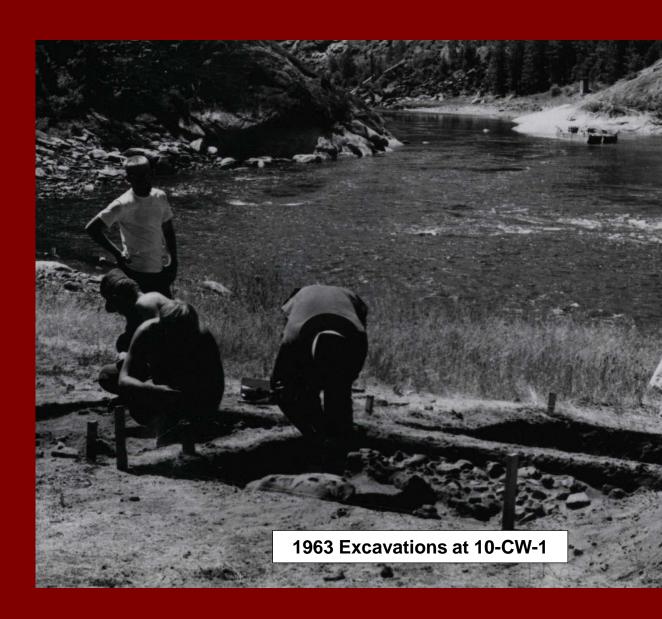
A Framework for Future Work

Paul S. Solimano

Willamette Cultural Resources Associates, Ltd., Portland and Seattle



1963 Excavations at 10-CW-1

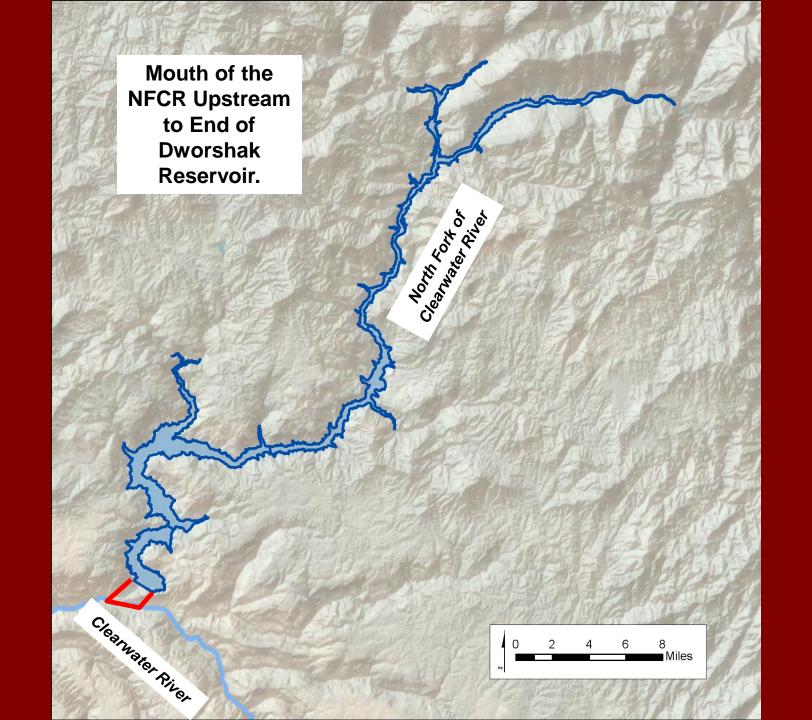


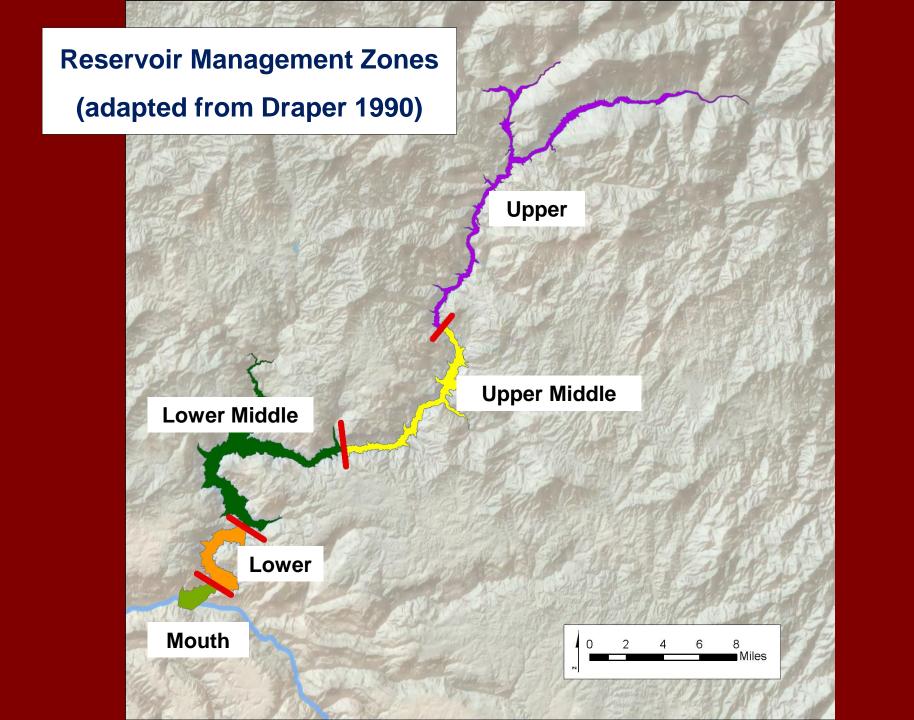
Outline

- Introduction.
- Data Used.
- · Results.
- Future Work.

Data Used

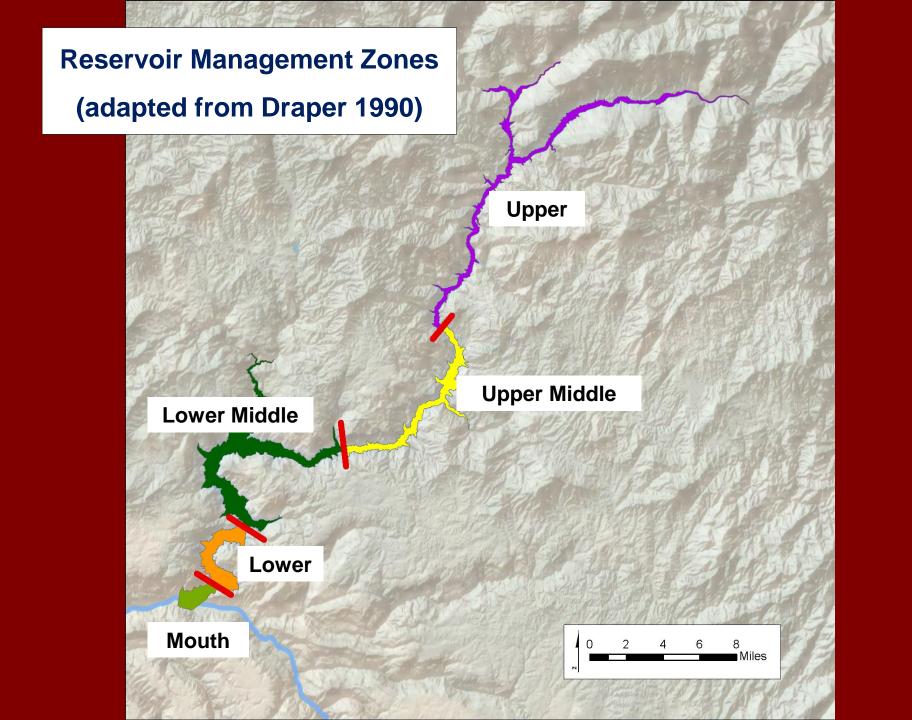
1. Area and Landscape.


2. Chronological Structure.


3. Excavation Data.

Data Used

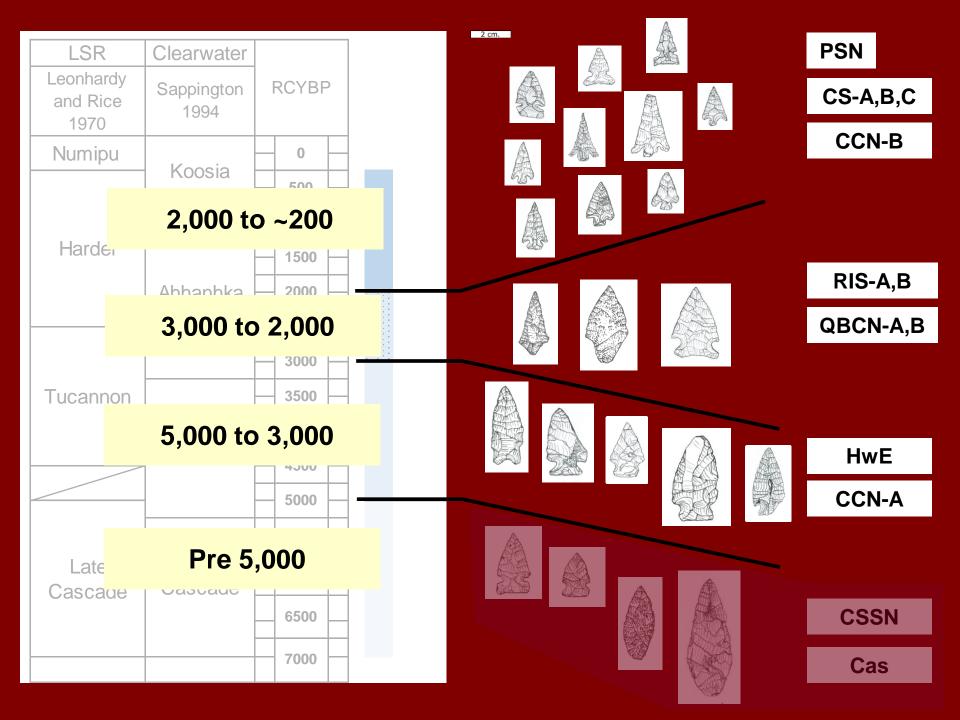
- 1. Area and Landscape.
 - Reservoir Management Zones (adapted from Draper 1990).
- 2. Chronological Structure.


3. Excavation Data.

Reserv (adap

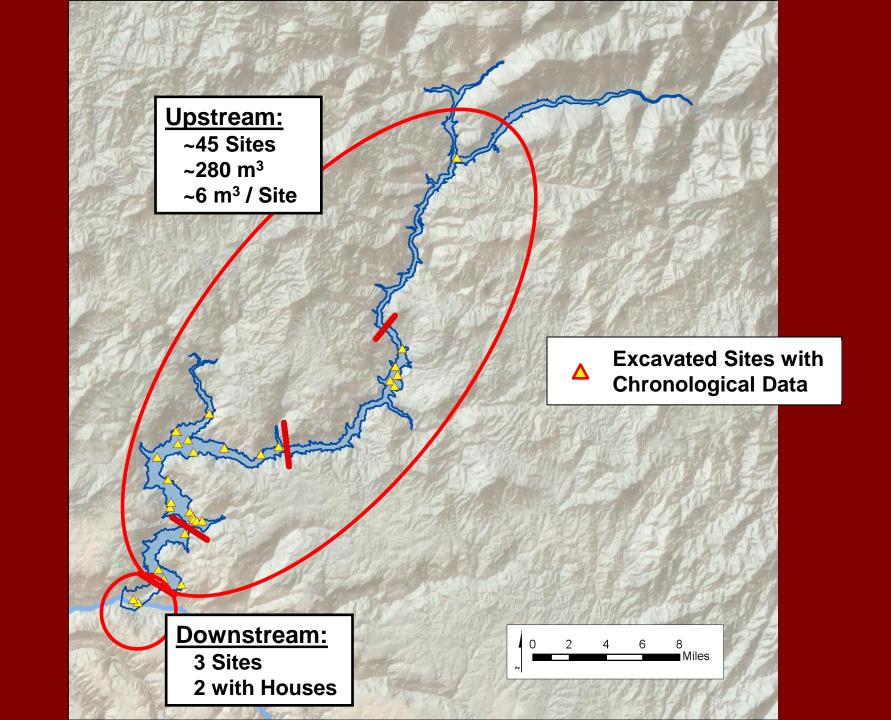
Reservoir Zones	Characteristics
	Two Wide Rivers
Mouth	Wide Valley
Modifi	Large Terraces
	Large Confluence
	One Wide River
Lower	Wide Valley
LOWCI	Large Terraces
	No Major Confluences
	One Wide River
Lower Middle	Wide, But Variable Valley
Lower imagic	Variable Terraces
	Several Large Confluences
	One Narrow River
Upper Middle	Narrow, But Variable Valley
opper imagic	Variable Terraces
	Several Smaller Confluences
	Two Narrow Rivers
	Narrow Valley
Upper	Small Terraces
	Small Confluences, One Moderate
	Confluence

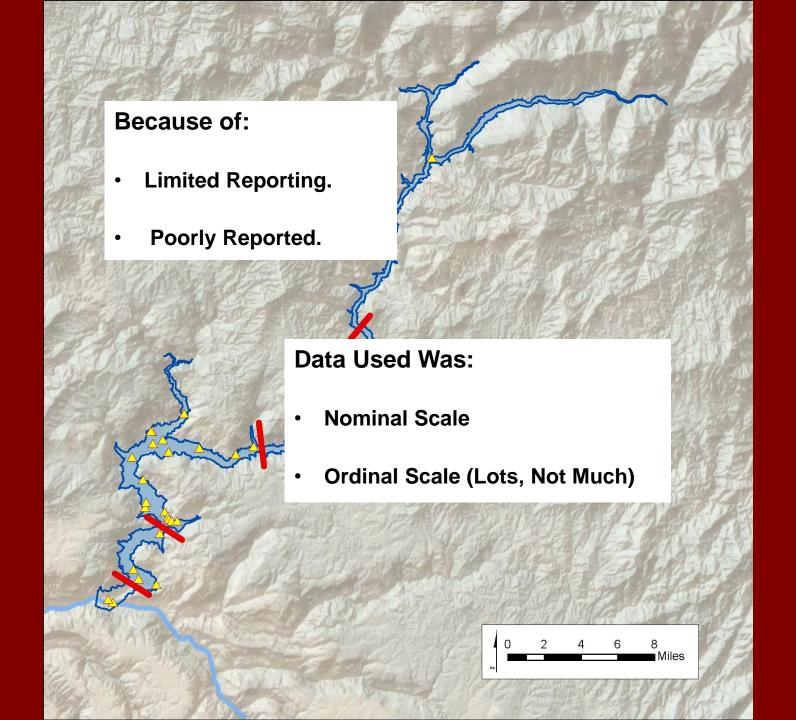
Data Used


- 1. Area and Landscape.
 - Reservoir Management Zones (adapted from Draper 1990).
- 2. Chronological Structure.
 - Projectile Points (~500).
 - Typed using Lohse 1985, Lohse and Shou 2008.
- 3. Excavation Data.

Series	Туре	Age	(Years	BP)	Age Group	Po	ints	Approximate Age Group
		Max	Min	Mean	Gloup	Cnt	Perc.	Time Span
Shouldered Lanceolate	Windust / Western Stemmed	12,000	8,500	10,250	1	9	2	Pre-8,500
Lanceolate	Cascade	8,500	4,000	6,250	II	6	4	0 F00 to F 000
Side-Notched Triangular	Cold Springs SN	7,600	4,000	5,800	II	17	4	8,500 to 5,000
Corner-Notched Eared	Hatwaii Eared	5,000	3,000	4,000	III	15	40	5 000 to 2 000
Corner-Notched Triangular	Columbia CN A	5,000	2,500	3,750	III	192	40	5,000 to 3,000
Corner-Removed	Rabbit Island Stemmed A / B	4,000	2,000	2,750	IV	23	6	2 000 to 2 000
Triangular	Quilomene Bar CN A / B	3,000	2,000	2,500	IV	7	O	3,000 to 2,000
	Wallula Rectangular Stemmed	2,000	1,500	1,750	V	4		
Dogal Notabad Triangular	Quilomene Bar BN A / B	2,000	1,500	1,750	V	11		
Basal-Notched Triangular	Columbia CN B	2,500	200	1,350	V	74	48	2,000 to 200
	Columbia Stemmed A, B, C	2,000	200	1,100	V	62		
	Plateau SN	1,500	200	850	V	97		
					Totals	517	100	

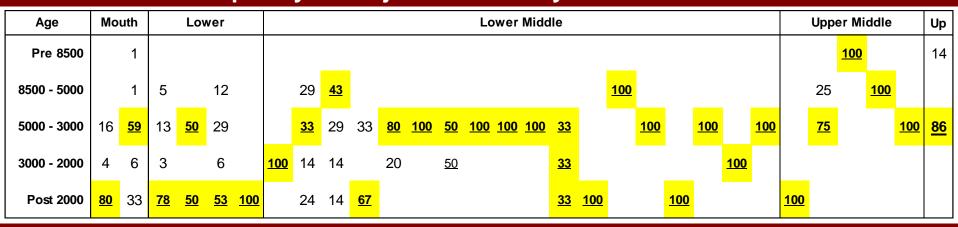
Series	Type	Age	(Years	BP)	Age Group	Po	ints	Approximate Age Group
		Max	Min	Mean	Gloup	Cnt	Perc.	Time Span
Shouldered Lanceolate	Windust / Western Stemmed	12,000	8,500	10,250	1	9	2	Pre-8,500
Lanceolate	Cascade	8,500	4,000	6,250	II	6	4	8,500 to 5,000
Side-Notched Triangular	Cold Springs SN	7,600	4,000	5,800	II	17	7	0,000 to 0,000
Corner-Notched Eared	Hatwaii Eared	5,000	3,000	4,000	III	15	40	5,000 to 3,000
Corner-Notched Triangular	Columbia CN A	5,000	2,500	3,750	III	192	40	3,000 to 3,000
Corner-Removed	Rabbit Island Stemmed A / B	4,000	2,000	2,750	IV	23	6	3,000 to 2,000
Triangular	Quilomene Bar CN A / B	3,000	2,000	2,500	IV	7	U	3,000 to 2,000
	Wallula Rectangular Stemmed	2,000	1,500	1,750	V	4		
Posal Notabad Triangular	Quilomene Bar BN A / B	2,000	1,500	1,750	V	11		
Basal-Notched Triangular	Columbia CN B	2,500	200	1,350	V	74	48	2,000 to 200
	Columbia Stemmed A, B, C	2,000	200	1,100	V	62		
	Plateau SN	1,500	200	850	V	97		
					Totals	517	100	


Series	Туре	Age	(Years	BP)	Age	Poi	nts	Approximate Age Group
		Max	Min	Mean	Group	Cnt	Perc.	Time Span
Shouldered Lanceolate	Windust / Western Stemmed	12,000	8,500	10,250	I	9	2	Pre-8,500
Lanceolate	Cascade	8,500	4,000	6,250	Ш	6	1	9 500 to 5 000
Side-Notched Triangular	Cold Springs SN	7,600	4,000	5,800	Ш	17	4	8,500 to 5,000
Corner-Notched Eared	Hatwaii Eared	5,000	3,000	4,000	III	15	40	5 000 to 2 000
Corner-Notched Triangular	Columbia CN A	5,000	2,500	3,750	III	192	40	5,000 to 3,000
Corner-Removed	Rabbit Island Stemmed A / B	4,000	2,000	2,750	IV	23	6	3,000 to 2,000
Triangular	Quilomene Bar CN A / B	3,000	2,000	2,500	IV	7	· ·	3,000 to 2,000
	Wallula Rectangular Stemmed	2,000	1,500	1,750	V	4		
Possi Notabod Triangular	Quilomene Bar BN A / B	2,000	1,500	1,750	V	11		
Basal-Notched Triangular	Columbia CN B	2,500	200	1,350	V	74	48	2,000 to 200
	Columbia Stemmed A, B, C	2,000	200	1,100	V	62		
	Plateau SN	1,500	200	850	V	97		
					Totals	485	100	


LSR	Clearwater	2 cm.	PSN
Leonhardy and Rice 1970	Sappington 1994	RCYBP	CS-A,B,C
Numipu	.,		CCN-B
	Koosia	500	
		— 1000 —	
Harder		<u> </u>	DIC A D
	Ahhanhka	2000	RIS-A,B
		2500	QBCN-A,B
		3000	
Tucannon		3500	
	 Hatwai	4000	
	Tiatwai	4500	HwE
		5000	CCN-A
		5500	
Late	Cascade	6000	
Cascade		6500	CSSN
		7000	Cas

Data Used

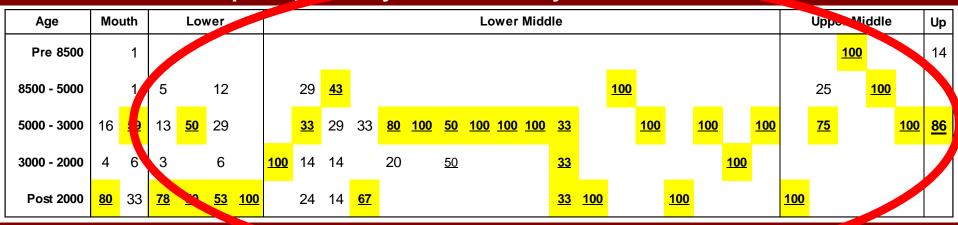
- 1. Area and Landscape.
 - Reservoir Management Zones (adapted from Draper 1990).
- 2. Chronological Structure.
 - Projectile Points (~500).
 - Typed using Lohse 1985, Lohse and Shou 2008.
- 3. Excavation Data.
 - 1970s survey and excavation along NFCR.
 - 1980s/1990s excavations at confluence of CR and NFCR.

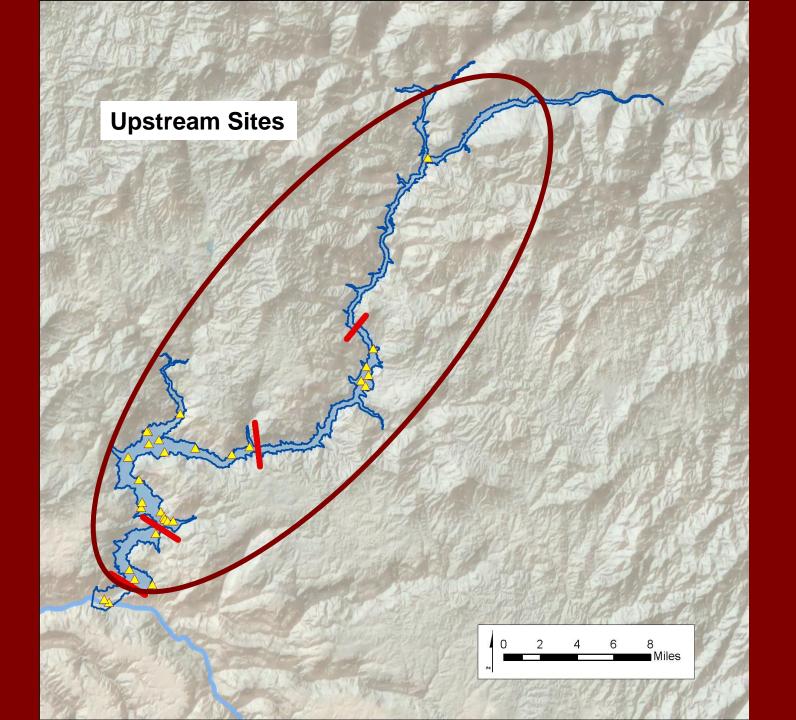


Results I Upstream

Results I

Upstream


Relative Frequency of Projectile Points by Site and Reservoir Zone



Results I

Upstream

Relative Frequency of Projectile Points by Site and Reservoir Zone

Results I

Upstream

Relative Frequency of Projectile Points by Site and Reservoir Zone

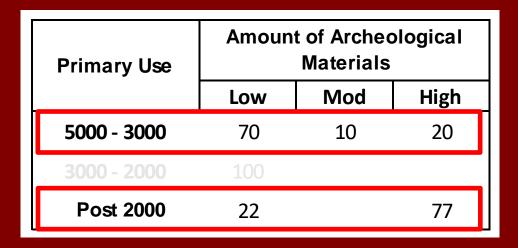
Age			Low	ver									Lo	wer	Midd	le								Upp	er Mi	ddle		Up
Pre 8500																												14
8500 - 5000				12																				25				
5000 - 3000	1	13	<u>50</u>	29			<u>33</u>	29	33	<u>80</u>	<u>100</u>	<u>50</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>33</u>		<u>100</u>		<u>100</u>		<u>100</u>		<u>75</u>			<u>100</u>	<u>86</u>
3000 - 2000		3		6		<u>100</u>	14	14		20		<u>50</u>				<u>33</u>					<u>100</u>							
Post 2000	3 7	<u>78</u>	<u>50</u>	<u>53</u>	<u>100</u>		24	14	<u>67</u>							<u>33</u>	<u>100</u>	-	<u>100</u>				<u>100</u>					

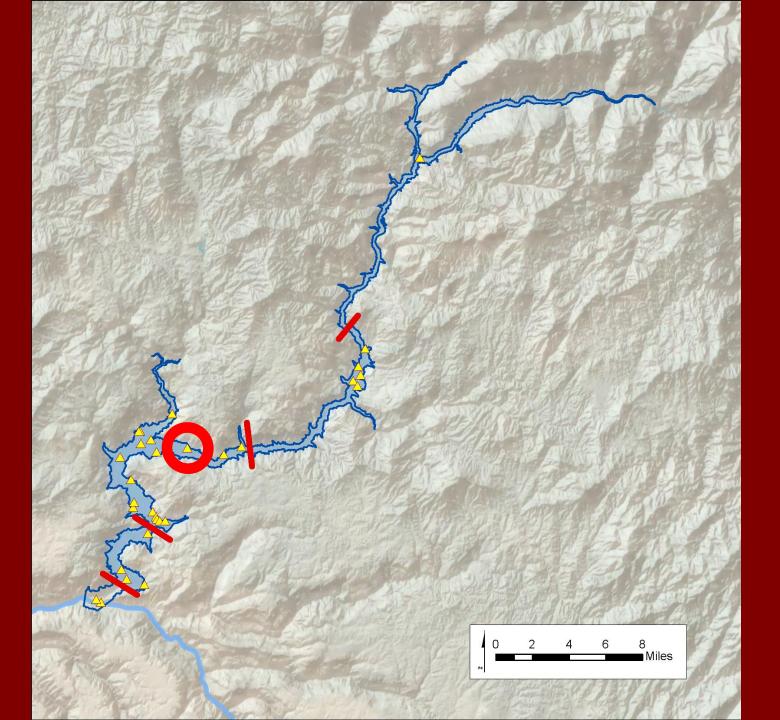
Results I Upstream

Relative Frequency of Projectile Points by Site and Reservoir Zone

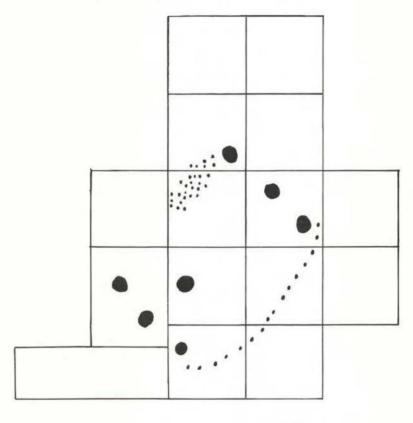
Age	ı		Lov	ver									Lo	wer	Midd	le								Upp	er Mi	ddle		Up
Pre 8500																												14
8500 - 5000				12																				25				
5000 - 3000	9	13	<u>50</u>	29			<u>33</u>	29	33	<u>80</u>	<u>100</u>	<u>50</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>33</u>	_	<u>100</u>	_	<u>100</u>		<u>100</u>		<u>75</u>			<u>100</u>	<u>86</u>
3000 - 2000		3		6		<u>100</u>	14	14		20		<u>50</u>				<u>33</u>					<u>100</u>							
Post 2000	3	<u>78</u>	<u>50</u>	<u>53</u>	<u>100</u>		24	14	<u>67</u>							<u>33</u>	<u>100</u>	-	<u>100</u>				<u>100</u>					

Relative Frequency of the Amount of Archaeological Material at Upstream Sites


Primary Use	Amoun	t of Arched Materials	ological
	Low	Mod	High
5000 - 3000	70	10	20
3000 - 2000	100		
Post 2000	22		77

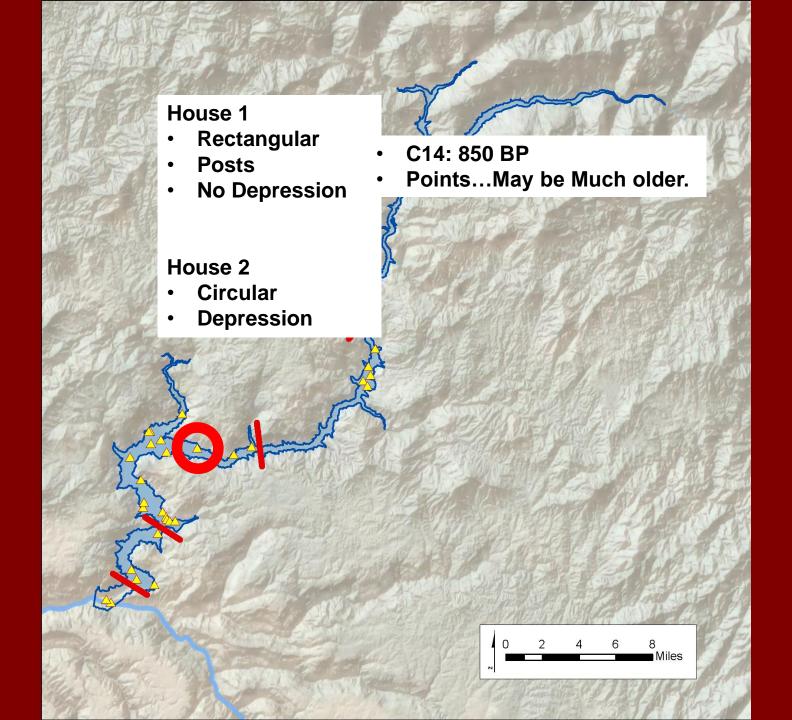

Results I Upstream

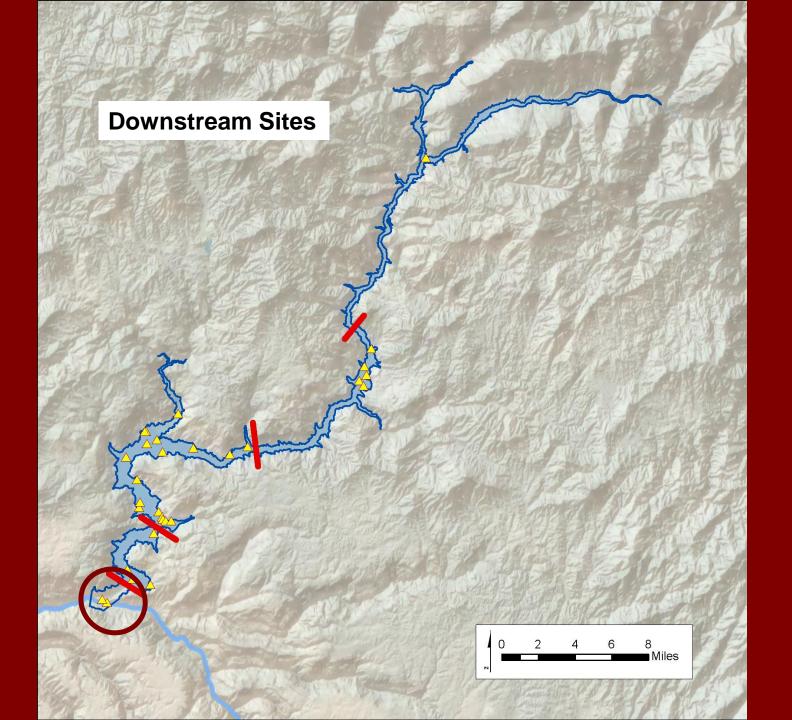
Relative Frequency of Projectile Points by Site and Reservoir Zone

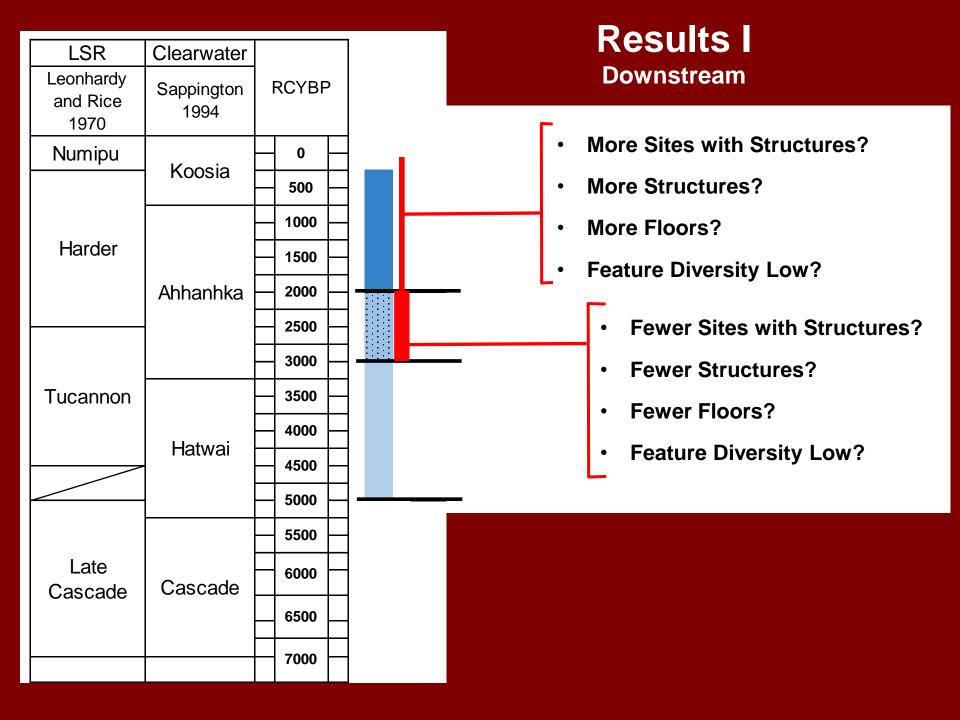

Age	ı		Lov	ver									Lo	wer	Midd	le								Upp	er Mi	ddle		Up
Pre 8500																												14
8500 - 5000				12																				25				
5000 - 3000	9	13	<u>50</u>	29			<u>33</u>	29	33	<u>80</u>	<u>100</u>	<u>50</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>33</u>	_	<u>100</u>	_	<u>100</u>		<u>100</u>		<u>75</u>			<u>100</u>	<u>86</u>
3000 - 2000		3		6		<u>100</u>	14	14		20		<u>50</u>				<u>33</u>					<u>100</u>							
Post 2000	3	<u>78</u>	<u>50</u>	<u>53</u>	<u>100</u>		24	14	<u>67</u>							<u>33</u>	<u>100</u>	-	<u>100</u>				<u>100</u>					

Relative Frequency of the Amount of Archaeological Material at Upstream Sites

BIG SPRING. HOUSE 1




MAP 4


meters

sketch map

Results II Putting It All Together

Downstream

- Numerous Robust Structures
- Used More Intensively.

- Few Robust Structures
- Used Less Intensively.

Upstream

- Small Number of Sites.
- Used Intensively.
- Temporary Structures.

- Large Number of Sites.
- Used Lightly.

Results II Putting It All Together

Downstream

Upstream

- Increasing Population.
- Population aggregation.
- Increased Annual Sedentism.
- Increased Logistical Movement
- Change in Landscape Use.
- Narrowing Patch Use.

Results II Putting It All Together

Downstream

Increasing Population.

- Population aggregation.
- Increased Annual Sedentism.
- Increased Logistical Movement

Upstream

- Change in Landscape Use.
- Narrowing Patch Use.

- 1. Scratched the Surface.
- 2. Vast amount of Archaeological information is untapped.
- 3. We are Completely Wrong.

- 1. Landscape Reconstruction
 - Landforms.

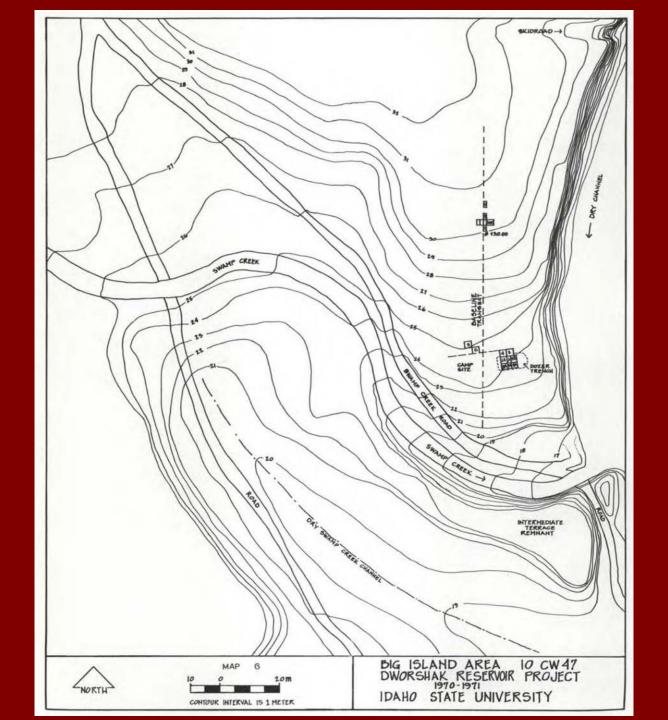
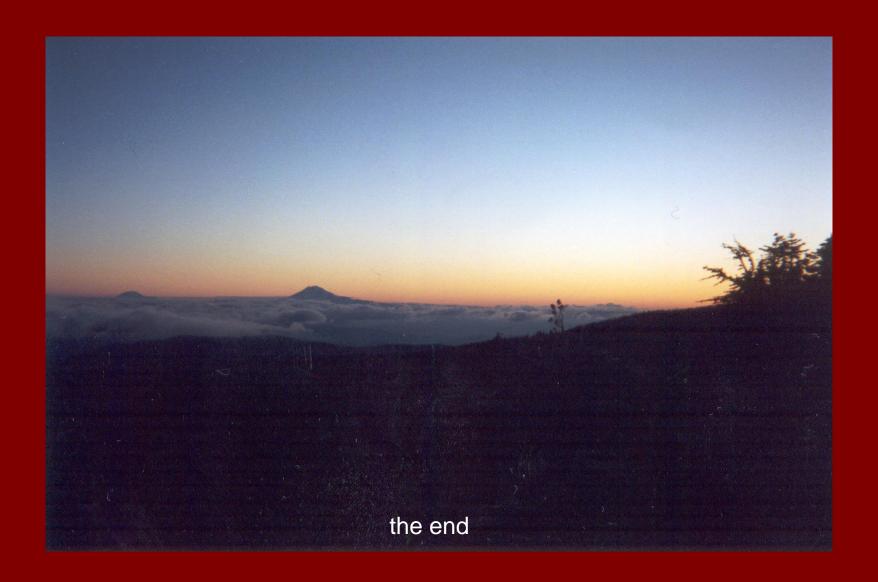


Figure 9.

1. Landscape Reconstruction


Landforms.

2. Compile Archaeological Data

- Upstream Sites
- Function
- Content, Tools, FCR, etc.

2. Ethnographic Data

- Place Names
- Storyscapes
- Traditional Use

